کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8072934 | 1521436 | 2016 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Numerical investigation of a looped-tube travelling-wave thermoacoustic engine with a bypass pipe
ترجمه فارسی عنوان
بررسی عددی یک موتور حرارتی آکوستیک با حرکت لوله با حلقه لوله با لوله بیرونی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موتور حرارتی موج حرکتی، دور زدن پیکربندی، کولر حرارتی
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
چکیده انگلیسی
A new configuration (“a looped-tube with a bypass pipe”) was recently proposed for low temperature travelling wave thermoacoustic engines and a prototype using atmospheric air as the working gas achieved an onset temperature difference as low as 65 °C. However, no further research has been reported about this new configuration to reveal its advantages and disadvantages. This paper aims to analyse this type of engine through a comprehensive numerical research. An engine of this type having dimensions similar to the reported prototype was firstly modelled. The calculated results were then qualitatively compared with the reported experimental data, showing a good agreement. The working principle of the engine was demonstrated and analysed. The research results show that an engine with such a bypass configuration essentially operates on the same thermodynamic principle as other travelling wave thermoacoustic engines, differing only in the design of the acoustic resonator. Both extremely short regenerators and a near-travelling wave resonator minimise the engine's acoustic losses, and thus significantly reduce its onset temperature difference. However, such short regenerators likely cause severe heat conduction losses, especially if the engine is applied to heat sources with higher temperatures. Furthermore, the acoustic power flowing back to the engine core is relatively low, while a large stream of acoustic power has to propagate within its resonator to maintain an acoustic resonance, potentially leading to low power density. The model was then applied to design an engine with a much longer regenerator and higher mean pressure to increase its power density. A thermoacoustic cooler was also added to the engine to utilise its acoustic power, allowing the evaluation of thermal efficiency. The pros and cons of the engine configuration are then discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 112, 1 October 2016, Pages 111-120
Journal: Energy - Volume 112, 1 October 2016, Pages 111-120
نویسندگان
Ali Al-Kayiem, Zhibin Yu,