کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8075381 | 1521464 | 2015 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sensitivity analysis and thermoeconomic comparison of ORCs (organic Rankine cycles) for low temperature waste heat recovery
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The sensitivity analysis for low temperature ORCs (organic Rankine cycles), as well as the thermoeconomic comparison between the basic ORC and regenerative ORC using Non-dominated sorting genetic algorithm-II (NSGA-II), are conducted in this paper. The derivatives of five system parameters on system performance are used to evaluate the parametric sensitiveness. The exergy efficiency and the APR (heat exchanger area per unit net power output) are selected as the objective functions for multi-objective optimization using R123 under the low temperature heat source of 423Â K. The Pareto frontier solution with bi-objective for maximizing exergy efficiency and minimizing APR is obtained and compared with the corresponding single-objective solutions. The results indicate that the prior consideration of improving thermal efficiency and exergy efficiency is to increase the evaporator outlet temperature. A fitting curve can be yielded from the Pareto frontier between the thermodynamic performance and economic factor. The optimum exergy efficiency and APR of the regenerative ORC obtained from the Pareto-optimal solution are 59.93% and 3.07Â m2/kW, which are 8.10% higher and 15.89% lower than that of the basic ORC, respectively. The Pareto optimization compromises the thermodynamic performance and economic factor, therefore being more suitable for decision making.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 82, 15 March 2015, Pages 664-677
Journal: Energy - Volume 82, 15 March 2015, Pages 664-677
نویسندگان
Yongqiang Feng, Yaning Zhang, Bingxi Li, Jinfu Yang, Yang Shi,