کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8079193 1521487 2013 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Online training algorithms based single multiplicative neuron model for energy consumption forecasting
ترجمه فارسی عنوان
الگوریتم های آموزش آنلاین با استفاده از یک مدل نورون چند تکلیفی برای پیش بینی مصرف انرژی
کلمات کلیدی
پیش بینی مصرف انرژی، مجموعه داده های کوچک و غیر خطی، یک مدل نورون چندتایی تک، فیلترهای غیرخطی اصطکاک
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی (عمومی)
چکیده انگلیسی
Although traditional approaches can yield accurate forecasting results of energy consumption, they may suffer from several limitations such as the need for large dataset and the linear assumption. Two novel hybrid dynamic approaches, which are based on the SMN (single multiplicative neuron) model and the iterated nonlinear filters, have been proposed for forecasting energy consumption with small dataset and nonlinearity in our study. The forecasting models are established by using the weights and the biases of SMN model to present the state vector and the output of SMN model to present the observation equation, and the input vector to the SMN model is composed of the known energy consumption values with a rolling mechanism. The SMN model has advantages of better approximation capabilities, simpler network structures and faster learning algorithms. The nonlinear filters can deal with additive noises and can update model parameters when a new observation data arrives due to their iterative algorithm structure. Two case studies of energy consumption have been used to demonstrate the reliability of the proposed models, and the experimental results have indicated that the proposed approaches outperform existing models in forecasting energy consumption.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Energy - Volume 59, 15 September 2013, Pages 126-132
نویسندگان
, , , ,