کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8093371 | 1522053 | 2018 | 40 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On-line life cycle health assessment for lithium-ion battery in electric vehicles
ترجمه فارسی عنوان
ارزیابی سلامت چرخه عمر باتری لیتیوم یون در خودروهای الکتریکی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برآورد ظرفیت، ویژگی انعطاف پذیر خودآزاری آنلاین، باتری لیتیوم یون، وسایل نقلیه الکتریکی،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Lithium-ion battery is a critical part in various industrial applications. In practice, the performance of such batteries degrades over time. To maintain the battery performance and ensure their reliability, it is important to implement on-line life cycle health state assessment in a battery management system. However, two big challenges in on-line battery actual capacity estimation must be overcome. The first one is the on-line extraction of measurable degradation features. The other one is the on-line mapping from the degradation feature space to the battery capacity space. This paper proposes a self-adaptive life-cycle health state assessment method based on the on-line measurable parameters of lithium-ion battery. Ten different degradation features are extracted from the voltage, electric current and critical time during operation. These degradation features are fused to achieve a higher adaptability to complex operating conditions. The lithium-ion battery health state is assessed with a mapping model that links the feature space to the capacity space. The model is trained by the least squares support vector machine method for less computational complexity. The experimental results based on the real battery testing data show that the correlation between the degradation feature and the battery capacity is higher than 0.7 and the mean error of capacity estimation is less than 0.05. For the dynamic operation conditions, the mean error of capacity estimation is less than 11â¯mAh. This study illustrates the adaptability and applicability of the proposed on-line life-cycle health state assessment approach in various electric vehicle applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 199, 20 October 2018, Pages 1050-1065
Journal: Journal of Cleaner Production - Volume 199, 20 October 2018, Pages 1050-1065
نویسندگان
Datong Liu, Yuchen Song, Lyu Li, Haitao Liao, Yu Peng,