کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8095906 1522066 2018 40 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Assessing and controlling of bench blasting-induced vibrations to minimize impacts to a neighboring community
ترجمه فارسی عنوان
ارزیابی و کنترل ارتعاش ناشی از انفجار بنچسبی برای به حداقل رساندن اثرات به جامعه همسایه
کلمات کلیدی
لرزش ناشی از انفجار، استخراج معادن، قانون ضعف
موضوعات مرتبط
مهندسی و علوم پایه مهندسی انرژی انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Blasting is an important operation in mining production but is a source of concern due to its associated environmental impact; in particular, blasting-induced vibrations may cause structural damage and human discomfort. For decades, communities near open-pit mines have complained of blasting-induced vibrations. This study presents a methodology to predict, assess, and control ground vibrations in large open-pit mines operating close to a community. To conduct this study, 178 levels of blasting-induced vibrations were recorded in an area encompassing a large open-pit iron ore mine and a neighboring community located in the Quadrilátero Ferrífero, state of Minas Gerais, Brazil. Collected data were processed with multiple regression techniques to obtain the blasting vibration attenuation law to predict the levels of blasting-induced vibrations for the locality studied with knowledge of only the maximum explosive charge per delay and the distance to the blasting point. Brazilian and international admissibility standards of blasting-induced vibration, the minimum distance between the mine and community and the constants obtained from the regression were used to establish the maximum explosive charge per delay for an acceptable ground vibration level that would not cause structural damage and human discomfort. Finally, the proposed methodology was validated by comparing the predicted ground vibrations levels to measured values. The results demonstrate that this methodology can be applied to any open-pit mine to control blasting-induced vibration effects.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 187, 20 June 2018, Pages 514-524
نویسندگان
, , , ,