کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8106823 | 1522181 | 2014 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
An investigation into minimising total energy consumption and total weighted tardiness in job shops
ترجمه فارسی عنوان
تحقیق برای به حداقل رساندن مصرف انرژی کل و تمام شدن وزن در مغازه های شغلی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
برنامه ریزی تولید کارآمد انرژی، تولید پایدار، جدول زمانبندی کار،
موضوعات مرتبط
مهندسی و علوم پایه
مهندسی انرژی
انرژی های تجدید پذیر، توسعه پایدار و محیط زیست
چکیده انگلیسی
Manufacturing enterprises nowadays face the challenge of increasing energy prices and requirements to reduce their emissions. Most reported work on reducing manufacturing energy consumption today focuses on the need to improve the efficiency of resources (machines) largely ignoring the potential for energy reducing on the system-level where the operational method can be employed as the energy saving approach. The advantage is clearly that the scheduling and planning approach can also be applied across existing legacy systems and does not require large investment. Therefore, a multi-objective scheduling method is developed in this paper with reducing energy consumption as one of the objectives. This research focuses on classical job shop environment which is widely used in the manufacturing industry. A model for the bi-objectives problem that minimises total electricity consumption and total weighted tardiness is developed and the Non-dominant Sorting Genetic Algorithm is employed as the solution to obtain the Pareto front. A case study based on a modified 10Â ÃÂ 10 job shop is presented to show the effectiveness of the algorithm and to prove the feasibility of the model.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Cleaner Production - Volume 65, 15 February 2014, Pages 87-96
Journal: Journal of Cleaner Production - Volume 65, 15 February 2014, Pages 87-96
نویسندگان
Ying Liu, Haibo Dong, Niels Lohse, Sanja Petrovic, Nabil Gindy,