کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8124228 1522744 2017 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Genesis and distribution of hydrogen sulfide in deep heavy oil of the Halahatang area in the Tarim Basin, China
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات ژئوشیمی و پترولوژی
پیش نمایش صفحه اول مقاله
Genesis and distribution of hydrogen sulfide in deep heavy oil of the Halahatang area in the Tarim Basin, China
چکیده انگلیسی
As the largest oil-and-gas-bearing basin in China, the Tarim Basin contains rich oil and gas resources buried deep underground. In recent years, large oil fields have been discovered in the Halahatang area of the northern Tarim Basin. The reservoir is buried 6000-7300 m underground. This reservoir is dominated by the Ordovician carbonate rocks, and the crude oil is mainly heavy oil. As a crude oil-associated gas, the natural gas generally contains hydrogen sulfide (H2S). The heavy oil in this region is the deepest buried heavy oil found in the world. H2S is also associated with the deepest buried natural gas. The burial, preservation and degree of biodegradation of a paleo-reservoir can be used to predict the distribution of H2S. According to research findings, there is a clear planar distribution pattern of H2S content: high in the east and north, and low in the west and south. We compared the physical properties of crude oil and the analysis of the composition of natural gas and isotopes, biomarker compounds of crude oil and groundwater. We find that the content of H2S in natural gas bears some relation to the physical properties and degree of biodegradation of crude oil. Crude oil density, sulfur content, colloid, and asphaltene have positive correlations with H2S content in natural gas. The formation of H2S is controlled by the degradation and densification of crude oil. Crude oil densification can lead to an increase of the sulfur content. The rise in the temperature of the reservoir resulting from the depth of burial causes the thermal decomposition of sulfur compounds to produce H2S. The generation of H2S by the thermal decomposition of sulfur compounds is confirmed by data on sulfur isotopes. The distribution of H2S can then be predicted based on the burial conditions of the paleo-reservoir and the degree of biodegradation. In the south Rewapu of the Halahatang area, the thick cap rock of the Ordovician oil reservoir was preserved well in the late Hercynian Period, without undergoing biodegradation. The oil is mainly normal oil and light oil. Sulfur content in the crude oil is quite low, making it impossible to generate a large amount of H2S in the later stages of deep burial.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Natural Gas Geoscience - Volume 2, Issue 1, February 2017, Pages 57-71
نویسندگان
, , , , , , ,