کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8146022 | 1524097 | 2018 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A bench-top hyperspectral imaging system to classify beef from Nellore cattle based on tenderness
ترجمه فارسی عنوان
یک سیستم تصویربرداری هیبره اسپکترومالی برای طبقه بندی گوشت گاو از گاو نولور بر اساس رطوبت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
فیزیک و نجوم
فیزیک اتمی و مولکولی و اپتیک
چکیده انگلیسی
The aim of this study was to evaluate the accuracy of classification of Nellore beef aged for 0, 7, 14, or 21â¯days and classification based on tenderness and aging period using a bench-top hyperspectral imaging system. A hyperspectral imaging system (λâ¯=â¯928-2524â¯nm) was used to collect hyperspectral images of the Longissimus thoracis et lumborum (aging nâ¯=â¯376 and tenderness nâ¯=â¯345) of Nellore cattle. The image processing steps included selection of region of interest, extraction of spectra, and indentification and evalution of selected wavelengths for classification. Six linear discriminant models were developed to classify samples based on tenderness and aging period. The model using the first derivative of partial absorbance spectra (give wavelength range spectra) was able to classify steaks based on the tenderness with an overall accuracy of 89.8%. The model using the first derivative of full absorbance spectra was able to classify steaks based on aging period with an overall accuracy of 84.8%. The results demonstrate that the HIS may be a viable technology for classifying beef based on tenderness and aging period.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Infrared Physics & Technology - Volume 89, March 2018, Pages 247-254
Journal: Infrared Physics & Technology - Volume 89, March 2018, Pages 247-254
نویسندگان
Keni Eduardo Zanoni Nubiato, Madeline Rezende Mazon, Daniel Silva Antonelo, Chris R. Calkins, Govindarajan Konda Naganathan, Jeyamkondan Subbiah, Saulo da Luz e Silva,