کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8208984 1532081 2016 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Density prediction for petroleum and derivatives by gamma-ray attenuation and artificial neural networks
ترجمه فارسی عنوان
پیش بینی تراکم نفت و مشتقات با اشباع گاما و شبکه های عصبی مصنوعی
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم تشعشع
چکیده انگلیسی
This work presents a new methodology for density prediction of petroleum and derivatives for products' monitoring application. The approach is based on pulse height distribution pattern recognition by means of an artificial neural network (ANN). The detection system uses appropriate broad beam geometry, comprised of a 137Cs gamma-ray source and a NaI(Tl) detector diametrically positioned on the other side of the pipe in order measure the transmitted beam. Theoretical models for different materials have been developed using MCNP-X code, which was also used to provide training, test and validation data for the ANN. 88 simulations have been carried out, with density ranging from 0.55 to 1.26 g cm−3 in order to cover the most practical situations. Validation tests have included different patterns from those used in the ANN training phase. The results show that the proposed approach may be successfully applied for prediction of density for these types of materials. The density can be automatically predicted without a prior knowledge of the actual material composition.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Radiation and Isotopes - Volume 116, October 2016, Pages 143-149
نویسندگان
, , , ,