کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8252619 1533508 2015 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of bremsstrahlung contribution to photon transport in coupled photon-electron problems
ترجمه فارسی عنوان
ارزیابی سهم برمبستگی به انتقال فوتون در مسائل فوتون-الکترونی همراه
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم تشعشع
چکیده انگلیسی
The most accurate description of the radiation field in x-ray spectrometry requires the modeling of coupled photon-electron transport. Compton scattering and the photoelectric effect actually produce electrons as secondary particles which contribute to the photon field through conversion mechanisms like bremsstrahlung (which produces a continuous photon energy spectrum) and inner-shell impact ionization (ISII) (which gives characteristic lines). The solution of the coupled problem is time consuming because the electrons interact continuously and therefore, the number of electron collisions to be considered is always very high. This complex problem is frequently simplified by neglecting the contributions of the secondary electrons. Recent works (Fernández et al., 2013, Fernández et al., 2014) have shown the possibility to include a separately computed coupled photon-electron contribution like ISII in a photon calculation for improving such a crude approximation while preserving the speed of the pure photon transport model. By means of a similar approach and the Monte Carlo code PENELOPE (coupled photon-electron Monte Carlo), the bremsstrahlung contribution is characterized in this work. The angular distribution of the photons due to bremsstrahlung can be safely considered as isotropic, with the point of emission located at the same place of the photon collision. A new photon kernel describing the bremsstrahlung contribution is introduced: it can be included in photon transport codes (deterministic or Monte Carlo) with a minimal effort. A data library to describe the energy dependence of the bremsstrahlung emission has been generated for all elements Z=1-92 in the energy range 1-150 keV. The bremsstrahlung energy distribution for an arbitrary energy is obtained by interpolating in the database. A comparison between a PENELOPE direct simulation and the interpolated distribution using the data base shows an almost perfect agreement. The use of the data base increases the calculation speed by several magnitude orders.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Radiation Physics and Chemistry - Volume 116, November 2015, Pages 203-207
نویسندگان
, , , ,