کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8256886 | 1534264 | 2016 | 19 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Modeling nonlinear Rayleigh wave fields generated by angle beam wedge transducers-A theoretical study
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
زمین شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Nonlinear Rayleigh wave fields generated by an angle beam wedge transducer are modeled in this study. The calculated area sound sources underneath the wedge are used to model the fundamental Rayleigh sound fields on the specimen surface, which are more accurate than the previously used line sources with uniform or Gaussian amplitude distributions. A general two-dimensional nonlinear Rayleigh wave equation without parabolic approximation is introduced and the solutions are obtained using the quasilinear theory. The second harmonic Rayleigh wave due to material nonlinearity is given in an integral expression with these fundamental Rayleigh waves radiated by the wedge transmitter acting as a forcing function. Multi-Gaussian beam (MGB) models are employed to simplify these integral solutions and to extract the diffraction and attenuation correction terms explicitly. The effect of nonlinearity of generating sources on the second harmonic Rayleigh wave fields is taken into consideration; simulation results show that it will affect the magnitude and diffraction correction of the second harmonic waves in the region close to the Rayleigh wave sound sources. This research provides a theoretical improvement to alleviate the experimental restriction on analyzing the effects of diffraction, attenuation and source nonlinearity when using angle beam wedge transducers as transmitters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wave Motion - Volume 67, December 2016, Pages 141-159
Journal: Wave Motion - Volume 67, December 2016, Pages 141-159
نویسندگان
Shuzeng Zhang, Xiongbing Li, Hyunjo Jeong, Hongwei Hu,