کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8257013 | 1534274 | 2015 | 20 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the gradient of the Green tensor in two-dimensional elastodynamic problems, and related integrals: Distributional approach and regularization, with application to nonuniformly moving sources
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
علوم زمین و سیارات
زمین شناسی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The two-dimensional elastodynamic Green tensor is the primary building block of solutions of linear elasticity problems dealing with nonuniformly moving rectilinear line sources, such as dislocations. Elastodynamic solutions for these problems involve derivatives of this Green tensor, which stand as hypersingular kernels. These objects, well defined as distributions, prove cumbersome to handle in practice. This paper, restricted to isotropic media, examines some of their representations in the framework of distribution theory. A particularly convenient regularization of the Green tensor is introduced, that amounts to considering line sources of finite width. Technically, it is implemented by an analytic continuation of the Green tensor to complex times. It is applied to the computation of regularized forms of certain integrals of tensor character that involve the gradient of the Green tensor. These integrals are fundamental to the computation of the elastodynamic fields in the problem of nonuniformly moving dislocations. The obtained expressions indifferently cover cases of subsonic, transonic, or supersonic motion. We observe that for faster-than-wave motion, one of the two branches of the Mach cone(s) displayed by the Cartesian components of these tensor integrals is extinguished for some particular orientations of source velocity vector.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Wave Motion - Volume 57, September 2015, Pages 44-63
Journal: Wave Motion - Volume 57, September 2015, Pages 44-63
نویسندگان
Yves-Patrick Pellegrini, Markus Lazar,