کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
83120 158687 2016 15 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Mapping long-term land use and land cover change in the central Himalayan region using a tree-based ensemble classification approach
ترجمه فارسی عنوان
نقشه برداری استفاده طولانی مدت از زمین و تغییر پوشش زمین در منطقه هیمالیا مرکزی با استفاده از روش طبقه بندی آنسامبل مبتنی بر درخت
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
خدمات تولید محتوا

این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.

  • تولید محتوا برای سایت و وبلاگ
  • تولید محتوا برای کتاب
  • تولید محتوا برای نشریات و روزنامه ها
  • و...

پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.

سفارش تولید محتوا
با 10 درصد تخفیف ویژه دانشیاری
کلمات کلیدی
لندست؛ نقشه LULC چند زمانه؛ جنگل تصادفی. فیوژن سطح تصمیم گیری؛ هیمالیا
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک جنگلداری
چکیده انگلیسی


• Developed temporal LULC maps using seasonal Landsat data and ancillary information.
• Combination of RF classifier and knowledge-based decision level fusion.
• High (>80%) accuracy of LULC maps for the central Himalayan region.
• Prospective use of proposed methodology in similar heterogeneous mountain terrains.
• Application in developing field inventories and forest conservation policies.

Forest cover and its change analysis along with nexus between other land cover types are often seen as insufficient data quality for operational applications in the Himalayan region. Despite extensive documentation reporting rapid demographic, socio-economic and environmental changes in this region, we lack comprehensive detailed assessments of spatial distribution of land use/land cover (LULC) change over an extended period of time. In this study, we overcame this limitation by producing annual maps of change among forests and other LULC classes in the Kumaon division in the state of Uttarakhand, India. This is the first attempt to develop a database for this region using public domain Landsat images and replicable mapping techniques. To deal with high spatial and temporal variability as well as complex multi-signature classes, this study uses a tree-based ensemble classification approach. The central premise of the approach is to exploit multi-seasonal information using characteristic temporal signatures in several spectral regions along with various environmental variables to identify twenty (20) LULC classes spanning three decades, focussing on distinguishing geographically dominant forest types. The maps were combined into seven LULC classes with reference to global databases. Random forest (RF) classifier was used to create seasonal maps, and knowledge-based decision level fusion was used to produce annual composite maps. Overall accuracies were equal to 82% (kappa = 0.75), 87% (kappa = 0.81), 87% (kappa = 0.82), and 88% (kappa = 0.83) for 1990, 1999, 2009 and 2014, respectively, while detailed maps had moderately high (∼70%) overall accuracies. As forests in the Himalayan region represent the most widespread vegetation structure, development of such time series analysis in this region can be potentially used for national and regional resource management efforts. This study, therefore, gives an insight on the potential of using a tree-based ensemble classification approach to provide a baseline database, which can aid in developing practical field inventories and forest conservation policies.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Geography - Volume 74, September 2016, Pages 136–150
نویسندگان
,,,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت