کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837006 1470399 2016 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fish-hook bifurcation branch in a spatial heterogeneous epidemic model with cross-diffusion
ترجمه فارسی عنوان
شاخه زنجیره ماهیگیری قلاب در یک مدل اپیدمی فضایی ناهمگون با انتشار متقابل
کلمات کلیدی
عبور از نفوذ، ناهمگونی، راه حل ثابت، قلاب ماهیگیری، شاخه دوخت
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی

In this paper, we consider the following strongly coupled epidemic model in a spatially heterogeneous environment with Neumann boundary condition: {ΔS+bS−(m+k(S+I))S−β(x)SI=0,x∈Ω,Δ((1+cθ(x)S)I)+ρbI−(m+k(S+I))I−δI+β(x)SI=0,x∈Ω,∂nS=∂nI=0,x∈∂Ω, where Ω⊂RnΩ⊂Rn is a bounded domain with smooth boundary ∂Ω∂Ω; b,m,k,cb,m,k,c and δδ are positive constants; β(x)∈C(Ω̄) and θ(x)θ(x) is a smooth positive function in Ω̄ within ∂nθ(x)=0 on ∂Ω∂Ω. The main result is that we have derived the set of positive solutions (endemic) and the structure of bifurcation branch: after assuming that the natural growth rate a:=b−ma:=b−m of SS is sufficiently small, the disease-induced death rate δδ is slightly small, and the cross-diffusion coefficient cc is sufficiently large, we show that the model admits a bounded branch ΓΓ of positive solutions, which is a monotone S-type or fish-hook-shaped curve with respect to the bifurcation parameter δδ. One of the most interesting findings is that the multiple endemic steady-states are induced by the cross-diffusion and the spatial heterogeneity of environments together.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 30, August 2016, Pages 99–125
نویسندگان
, ,