کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
837344 908336 2013 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Existence and multiplicity results for elliptic problems with p(⋅)p(⋅)—Growth conditions
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
Existence and multiplicity results for elliptic problems with p(⋅)p(⋅)—Growth conditions
چکیده انگلیسی

The variable exponent spaces are essential in the study of certain nonhomogeneous materials. In the framework of these spaces, we are concerned with a nonlinear elliptic problem involving a p(⋅)p(⋅)-Laplace-type operator on a bounded domain Ω⊂RN(N≥2)Ω⊂RN(N≥2) of smooth boundary ∂Ω∂Ω. We introduce the variable exponent Sobolev space of the functions that are constant on the boundary and we show that it is a separable and reflexive Banach space. This is the space where we search for weak solutions to our equation −div(a(x,∇u))+|u|p(x)−2u=λf(x,u), provided that λ≥0λ≥0 and a:Ω¯×RN→RN,f:Ω×R→Rf:Ω×R→R are fulfilling appropriate conditions. We use different types of mountain pass theorems, a classical Weierstrass type theorem and several three critical points theorems to establish existence and multiplicity results under different hypotheses. We treat separately the case when ff has a p(⋅)−1p(⋅)−1—superlinear growth at infinity and the case when ff has a p(⋅)−1p(⋅)−1—sublinear growth at infinity.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 14, Issue 4, August 2013, Pages 1829–1844
نویسندگان
, ,