کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
838133 908355 2010 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An improved working set selection for SMO-type decomposition method
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
پیش نمایش صفحه اول مقاله
An improved working set selection for SMO-type decomposition method
چکیده انگلیسی

The sequential minimization optimization (SMO) is a simple and efficient decomposition algorithm for solving support vector machines (SVMs). In this paper, an improved working set selection and a simplified minimization step are proposed for the SMO-type decomposition method that reduces the learning time for SVM and increases the efficiency of SMO. Since the working set is selected directly according to the Karush–Kuhn–Tucker (KKT) conditions, the minimization step of subproblem is simplified, accordingly the learning time for SVM is reduced and the convergence is accelerated. Following Keerthi’s method, the convergence of the proposed algorithm is analyzed. It is proven that within a finite number of iterations, solution that is based on satisfaction of the KKT conditions will be obtained by using the improved algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 11, Issue 5, October 2010, Pages 3834–3841
نویسندگان
, , ,