کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
838470 | 908360 | 2007 | 11 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global output convergence of recurrent neural networks with distributed delays
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مهندسی (عمومی)
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
This paper discusses the global output convergence of a class of recurrent neural networks with distributed delays. The inputs of the neural networks are required to be time varying and the activation functions to be globally continuous and monotone nondecreasing. By using the definiteness of matrix and the properties of M-matrix, several sufficient conditions are established to guarantee the global output convergence of this class of neural networks. Symmetry in the connection weight matrices and the boundedness of the activation functions are not required in this paper. The convergence results are useful in solving some optimization problems and in the design of recurrent neural networks with distributed delays.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Nonlinear Analysis: Real World Applications - Volume 8, Issue 1, February 2007, Pages 187–197
Journal: Nonlinear Analysis: Real World Applications - Volume 8, Issue 1, February 2007, Pages 187–197
نویسندگان
Jinling Liang, Jinde Cao,