کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
84050 158858 2016 6 صفحه PDF سفارش دهید دانلود کنید
عنوان انگلیسی مقاله ISI
Wheat grain classification by using dense SIFT features with SVM classifier
ترجمه فارسی عنوان
طبقه بندی دانه گندم با استفاده از ویژگی های SIFT متراکم با طبقه بندی SVM
کلمات کلیدی
شناسایی گندم؛ طبقه بندی دانه؛ ویژگی های SIFT انبوه؛ ماشین بردار پشتیبان. کیسه مدل وورد
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• We put an automated system to classify the wheat grains with a high accuracy rate.
• We used the performance of DSIFT evaluated by SVM classifier.
• The proposed method provides an overall 88.33% accuracy rate.

The demand for identification of cereal products with computer vision based applications has grown significantly over the last decade due to economic developments and reducing the labor force. With this regard, we have proposed an automated system that is capable to classify the wheat grains with the high accuracy rate. For this purpose, the performance of Dense Scale Invariant Features (DSIFT) is evaluated by concentrating on Support Vector Machine (SVM) classifier. First of all, the concept of k-means clustering is operated on DSIFT features and then images are represented with histograms of features by constituting the Bag of Words (BoW) of the visual words. By conducting an experimental study on a special dataset, we can make a commitment that the proposed method provides the satisfactory results by achieving an overall 88.33% accuracy rate.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 122, March 2016, Pages 185–190
نویسندگان
, , , , , , , , , ,