کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | ترجمه فارسی | نسخه تمام متن |
---|---|---|---|---|---|
84050 | 158858 | 2016 | 6 صفحه PDF | سفارش دهید | دانلود رایگان |
این مقاله ISI می تواند منبع ارزشمندی برای تولید محتوا باشد.
- تولید محتوا برای سایت و وبلاگ
- تولید محتوا برای کتاب
- تولید محتوا برای نشریات و روزنامه ها
- و...
پایگاه «دانشیاری» آمادگی دارد با همکاری مجموعه «شهر محتوا» با استفاده از این مقاله علمی، برای شما به زبان فارسی، تولید محتوا نماید.
• We put an automated system to classify the wheat grains with a high accuracy rate.
• We used the performance of DSIFT evaluated by SVM classifier.
• The proposed method provides an overall 88.33% accuracy rate.
The demand for identification of cereal products with computer vision based applications has grown significantly over the last decade due to economic developments and reducing the labor force. With this regard, we have proposed an automated system that is capable to classify the wheat grains with the high accuracy rate. For this purpose, the performance of Dense Scale Invariant Features (DSIFT) is evaluated by concentrating on Support Vector Machine (SVM) classifier. First of all, the concept of k-means clustering is operated on DSIFT features and then images are represented with histograms of features by constituting the Bag of Words (BoW) of the visual words. By conducting an experimental study on a special dataset, we can make a commitment that the proposed method provides the satisfactory results by achieving an overall 88.33% accuracy rate.
Journal: Computers and Electronics in Agriculture - Volume 122, March 2016, Pages 185–190