کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8418002 1545710 2013 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Probability state modeling of memory CD8+ T-cell differentiation
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوتکنولوژی یا زیست‌فناوری
پیش نمایش صفحه اول مقاله
Probability state modeling of memory CD8+ T-cell differentiation
چکیده انگلیسی
Flow cytometric analysis enables the simultaneous single-cell interrogation of multiple biomarkers for phenotypic and functional identification of heterogeneous populations. Analysis of polychromatic data has become increasingly complex with more measured parameters. Furthermore, manual gating of multiple populations using standard analysis techniques can lead to errors in data interpretation and difficulties in the standardization of analyses. To characterize high-dimensional cytometric data, we demonstrate the use of probability state modeling (PSM) to visualize the differentiation of effector/memory CD8+ T cells. With this model, four major CD8+ T-cell subsets can be easily identified using the combination of three markers, CD45RA, CCR7 (CD197), and CD28, with the selection markers CD3, CD4, CD8, and side scatter (SSC). PSM enables the translation of complex multicolor flow cytometric data to pathway-specific cell subtypes, the capability of developing averaged models of healthy donor populations, and the analysis of phenotypic heterogeneity. In this report, we also illustrate the heterogeneity in memory T-cell subpopulations as branched differentiation markers that include CD127, CD62L, CD27, and CD57.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Immunological Methods - Volume 397, Issues 1–2, 29 November 2013, Pages 8-17
نویسندگان
, , ,