کد مقاله کد نشریه سال انتشار مقاله انگلیسی ترجمه فارسی نسخه تمام متن
84410 158880 2014 9 صفحه PDF سفارش دهید دانلود رایگان
عنوان انگلیسی مقاله ISI
Automatic threshold method and optimal wavelength selection for insect-damaged vegetable soybean detection using hyperspectral images
ترجمه فارسی عنوان
روش آستانه اتوماتیک و انتخاب طول موج مطلوب برای شناسایی سویا گیاهی آسیب دیده حشرات با استفاده از تصاویر هیپرسیونتر
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نرم افزارهای علوم کامپیوتر
چکیده انگلیسی


• Automatic threshold segmentation was used to extract the region of interest.
• Entropy, energy and mean features were extracted from the region of interest.
• Fuzzy-rough set based on the thermal charge algorithm was used to select wavelengths.
• The developed models yielded good accuracy for detecting vegetable soybeans.

Insects in vegetable soybean undermine the quality and safety of soybean products. Thus, a non-destructive technique of detecting insect-damaged vegetable soybean must be developed. An efficient detection method based on a hyperspectral image was proposed by selecting the region of interest (ROI) through automatic threshold segmentation and optimal wavelength selection using the fuzzy-rough set model. For the 362 samples of beans, three image features (i.e., entropy, energy, and mean) of the ROI were extracted as classification features, whose spectral region covered 400–1000 nm and contained 94 wavelengths. Three or less optimal wavelengths were then selected using a fuzzy-rough set model based on the thermal charge algorithm (FRSTCA). Support vector data description (SVDD) was used to develop classification models for the insect-damaged soybean. For the prediction samples of the beans, the classification results indicated that the normal samples were 100.0% correctly classified using the automatic extracting ROI method based on automatic threshold segmentation. The classification accuracy for the insect-damaged samples was 91.7%, and a 98.8% overall classification accuracy was achieved with the FRSTCA selecting two wavelengths.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Computers and Electronics in Agriculture - Volume 106, August 2014, Pages 102–110
نویسندگان
, , , ,
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
سفارش ترجمه تخصصی
با تضمین قیمت و کیفیت