| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8457958 | 1548863 | 2018 | 5 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Long non-coding RNA POLR2E rs3787016 is associated with the risk of papillary thyroid carcinoma in Chinese population
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													علوم زیستی و بیوفناوری
													بیوشیمی، ژنتیک و زیست شناسی مولکولی
													تحقیقات سرطان
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Long non-coding RNAs (LncRNAs) have been shown to be involved in cancer tumorigenesis and progression. Single nucleotide polymorphisms (SNPs) in the lncRNAs also play a vital role in carcinogenesis. We here explored the association between POLR2E rs3787016 and risk of papillary thyroid carcinoma (PTC) in a Chinese population, which was followed by a meta-analysis of POLR2E rs3787016 and cancer risk in Chinese population. A total of 409 PTC patients and 800 healthy individuals were enrolled in the present study. The POLR2E rs3787016 was genotyped by polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and was confirmed by sequencing. The POLR2E rs3787016T allele increased the PTC risk in Chinese population, particular in Chinese females. The meta-analysis further revealed that POLR2E rs3787016T allele was associated with an increased cancer risk in Chinese population. Collectively, the POLR2E rs3787016 may be used as a genetic biomarker to predict cancer risk in Chinese population.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Pathology - Research and Practice - Volume 214, Issue 7, July 2018, Pages 1040-1044
											Journal: Pathology - Research and Practice - Volume 214, Issue 7, July 2018, Pages 1040-1044
نویسندگان
												Bifeng Chen, Jinfeng Li, Can Yi, Yuwei Jiao, Xiuli Gu, Xianhong Feng,