کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
847269 909222 2016 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Multi-sensor marginalized particle filter based on average weight optimization in correlated noise
ترجمه فارسی عنوان
فیلتر ذرات حاشیه ای چند سنسور بر اساس میانگین بهینه سازی وزن در نویز همپوشانی
کلمات کلیدی
فیلتر غیرخطی فیلتر ذرات مجزا، سر و صدا مرتبط، بهینه سازی متوسط ​​وزن
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی (عمومی)
چکیده انگلیسی

Particle filter is a kind of powerful and effective simulation-based method to perform optimal state estimation in nonlinear non-Gaussian state-space models. However, its main drawback is with large computational complexity and not suitable for noise correlation condition, which limits its application in the multi-sensor measurement system. Aiming at the above problem, a novel multi-sensor marginalized particle filter based on average weight optimization in correlated noise is proposed. First, marginalized particle filter is used as the basic framework of new algorithm realization by marginalizing the states appearing linearly in the dynamical system, and the objective is to reduce the calculated amount. Second, considering the rational utilization of multi-sensor measurement, the average weight optimization strategy is used to improve the adverse influence caused by random measurement noise in measuring process of particles weight. Third, combining with the model reconstruction technology, a new decoupling approach of correlated noise is designed in multi-sensor measurement. Finally, the theoretical analysis and experimental results show the feasibility and efficiency of the proposed algorithm.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Optik - International Journal for Light and Electron Optics - Volume 127, Issue 12, June 2016, Pages 5163–5167
نویسندگان
, ,