کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8479400 1551319 2008 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Characterization of interactions between phencyclidine and amphetamine in rodent prefrontal cortex and striatum: Implications in NMDA/glycine-site-mediated dopaminergic dysregulation and dopamine transporter function
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیولوژی سلول
پیش نمایش صفحه اول مقاله
Characterization of interactions between phencyclidine and amphetamine in rodent prefrontal cortex and striatum: Implications in NMDA/glycine-site-mediated dopaminergic dysregulation and dopamine transporter function
چکیده انگلیسی
N-Methyl-d-aspartate (NMDA) antagonists induced behavioral and neurochemical changes in rodents that serve as animal models of schizophrenia. Chronic phencyclidine (PCP, 15 mg/(kg day) for 3 weeks via Alzet osmotic pump) administration enhances the amphetamine (AMPH)-induced dopamine (DA) efflux in prefrontal cortex (PFC), similar to that observed in schizophrenia. NMDA/glycine-site agonists, such as glycine (GLY), administered via dietary supplementation, reverse the enhanced effect. The present study investigated mechanisms of glycine-induced reversal of PCP-induced stimulation of AMPH-induced DA release, using simultaneous measurement of DA and AMPH in brain microdialysate, as well as peripheral and tissue AMPH levels. PCP treatment, by itself, increased peripheral and central AMPH levels, presumably via interaction with hepatic enzymes (e.g. cytochrome P450 CYP2C11). GLY (16% diet) had no effect on peripheral AMPH levels in the presence of PCP. Nevertheless, GLY significantly reduced extracellular/tissue AMPH ratios in both PFC and striatum (STR), especially following PCP administration, suggesting a feedback mediated effect on the dopamine transporter. GLY also inhibited acute AMPH (5 mg/kg)-induced DA release in PFC, but not STR. These findings suggest that GLY may modulate DA release in brain by producing feedback regulation of dopamine transporter function, possibly via potentiation of NMDA-stimulated GABA release and presynaptic GABAB receptor activation. The present studies also demonstrate pharmacokinetic interaction between AMPH and PCP, which may be of both clinical and research relevance.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurochemistry International - Volume 52, Issues 1–2, January 2008, Pages 119-129
نویسندگان
, , , , , ,