کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
850228 | 909281 | 2013 | 5 صفحه PDF | دانلود رایگان |

Sparse representation uses all training samples to represent a test sample only once, which can be regarded as a one step representation. However, in palmprint recognition, the appearances of palms are highly correlated which means the information provided by all the training samples are redundant while using the representation-based methods. Hence, how to obtain suitable samples for representation deserves exploring. In this paper, we devise a multi-step representation manner to extract the most representative samples for representation and recognition. In addition, the proposed sample selection strategy is based on contributions of the classes, not merely the effort of a single sample. Compared with some other appearance-based methods, the proposed method obtained a competitive result on PolyU multispectral palmprint database.
Journal: Optik - International Journal for Light and Electron Optics - Volume 124, Issue 22, November 2013, Pages 5727–5731