کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
850858 | 909294 | 2013 | 6 صفحه PDF | دانلود رایگان |

Pure ZnO and Mn (1%wt.) doped-ZnO nanocrystalline particles were synthesized by reverse micelle method. The structural properties of the nanoparticles were investigated by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM) techniques. UV–vis and photoluminescence (PL) spectroscopy was used for analyzing the optical properties of the nanoparticles. XRD and TEM results revealed the formation of ZnO and Mn doped-ZnO nanocrystalline particles with pure wurtzite crystal structure and average particle size of 18–21 nm. From UV–vis studies, the optical band gap energy of 3.53 and 3.58 eV obtained for ZnO and Mn doped-ZnO nanoparticles, respectively. Further optical analysis showed that the refractive index decreases from 2.35 to 1.35 with the change of wavelength. Room-temperature photoluminescence analysis of all samples showed four main emission bands including a strong UV emission band, a weak blue band, a week blue–green band, and a weak green band which indicated their high structural and optical quality. Moreover, the samples exposed to gamma rays sources of 137Cs and 60Co and their thermoluminescence properties were investigated. The thermoluminescence response of ZnO and Mn doped-ZnO nanocrystalline particles as a function of dose exhibited good linear ranges, which make them very promising detectors and dosimeters suitable for ionizing radiation.
► The design space of a purification process is determined using numerical modeling.
► The risk of batch failure and the critical process parameters (CPP) are assessed.
► Process disturbances significantly decrease the design space.
► Only simultaneous and specific changes in multiple process parameters lead to batch failure.
► The determined design space is checked through suitable experimental runs.
Journal: Optik - International Journal for Light and Electron Optics - Volume 124, Issue 20, October 2013, Pages 4128–4133