کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8517305 | 1556586 | 2018 | 38 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
TIGAR inhibits ischemia/reperfusion-induced inflammatory response of astrocytes
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب رفتاری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The inflammatory response of glial cells contributes to neuronal damage or repair after brain ischemia/reperfusion insult. We previously demonstrated a protective role of TP53-induced glycolysis and apoptosis regulator (TIGAR) in ischemic neuronal injury through increasing the flow of pentose phosphate pathway (PPP). The present study investigated the possible role of TIGAR in ischemia/reperfusion-induced inflammatory response of astrocytes. Male ICR mice were subjected to middle cerebral artery occlusion for 2â¯h followed by 24â¯h reperfusion and cultured primary astrocytes were subjected to oxygen glucose deprivation for 9â¯h followed by 24â¯h reoxygenation (OGD/R). Adenoviral vectors were used to alter the levels of TIGAR protein in brain and in culture primary astrocytes. We showed that during the OGD/R insult the protein levels of TIGAR were rapidly increased in astrocytes. Overexpression of TIGAR mediated increased the viability, levels of NADPH and rGSH, and reduced intracellular reactive oxygen species (ROS) in cultured primary astrocytes. Overexpression of TIGAR not only significantly reduced infarct volume after stroke insult but also markedly reduced long-term mortality and improved recovery of neurological functions. Overexpression of TIGAR tempered OGD/R- or ischemia/reperfusion-induced the upregulation of inducible nitric oxide synthase (iNOS), cyclooxygenases COX2 and the release of pro-inflammatory cytokines interleukin 1 beta (IL-1β) and tumor necrosis factor-α (TNF-α), while TIGAR knockdown produced opposite effects on these parameters. Moreover, Overexpression of TIGAR suppressed OGD/R-induced degradation of IκBα and NF-κB nuclear translocation in cultured primary astrocytes. The present study elucidates a novel mechanism by which TIGAR protects neurons against ischemia/reperfusion injury.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuropharmacology - Volume 131, 15 March 2018, Pages 377-388
Journal: Neuropharmacology - Volume 131, 15 March 2018, Pages 377-388
نویسندگان
Jieyu Chen, Ding-Mei Zhang, Xing Feng, Jian Wang, Yuan-Yuan Qin, Tian Zhang, Qiao Huang, Rui Sheng, Zhong Chen, Mei Li, Zheng-Hong Qin,