کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8550091 1562027 2018 37 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم محیط زیست بهداشت، سم شناسی و جهش زایی
پیش نمایش صفحه اول مقاله
Valproic acid attenuates manganese-induced reduction in expression of GLT-1 and GLAST with concomitant changes in murine dopaminergic neurotoxicity
چکیده انگلیسی
Exposure to elevated levels of manganese (Mn) causes manganism, a neurological disorder with similar characteristics to those of Parkinson's disease (PD). Valproic acid (VPA), an antiepileptic, is known to inhibit histone deacetylases and exert neuroprotective effects in many experimental models of neurological disorders. In the present study, we investigated if VPA attenuated Mn-induced dopaminergic neurotoxicity and the possible mechanisms involved in VPA's neuroprotection, focusing on modulation of astrocytic glutamate transporters (glutamate aspartate transporter, GLAST and glutamate transporter 1, GLT-1) and histone acetylation in H4 astrocyte culture and mouse models. The results showed that VPA increased promoter activity, mRNA/protein levels of GLAST/GLT-1 and glutamate uptake, and reversed Mn-reduced GLAST/GLT-1 in in vitro astrocyte cultures. VPA also attenuated Mn-induced reduction of GLAST and GLT-1 mRNA/protein levels in midbrain and striatal regions of the mouse brain when VPA (200 mg/kg, i.p., daily, 21 d) was administered 30 min prior to Mn exposure (30 mg/kg, intranasal instillation, daily, 21 d). Importantly, VPA attenuated Mn-induced dopaminergic neuronal damage by reversing Mn-induced decrease of tyrosine hydroxylase (TH) mRNA/protein levels in the nigrostriatal regions. VPA also reversed Mn-induced reduction of histone acetylation in astrocytes as well as mouse brain tissue. Taken together, VPA exerts attenuation against Mn-induced decrease of astrocytic glutamate transporters parallel with reversing Mn-induced dopaminergic neurotoxicity and Mn-reduced histone acetylation. Our findings suggest that VPA could serve as a potential neuroprotectant against Mn neurotoxicity as well as other neurodegenerative diseases associated with excitotoxicity and impaired astrocytic glutamate transporters.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroToxicology - Volume 67, July 2018, Pages 112-120
نویسندگان
, , , , , , ,