کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8648207 1570438 2018 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A convolutional autoencoder approach for mining features in cellular electron cryo-tomograms and weakly supervised coarse segmentation
ترجمه فارسی عنوان
یک رویکرد اتوماتیک کانتور کانوتری برای ویژگی های معدن در کریو توموگرافی الکترونی سلولی و تقسیم بندی درشت ضعیف تحت نظارت
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی مولکولی
چکیده انگلیسی
Cellular electron cryo-tomography enables the 3D visualization of cellular organization in the near-native state and at submolecular resolution. However, the contents of cellular tomograms are often complex, making it difficult to automatically isolate different in situ cellular components. In this paper, we propose a convolutional autoencoder-based unsupervised approach to provide a coarse grouping of 3D small subvolumes extracted from tomograms. We demonstrate that the autoencoder can be used for efficient and coarse characterization of features of macromolecular complexes and surfaces, such as membranes. In addition, the autoencoder can be used to detect non-cellular features related to sample preparation and data collection, such as carbon edges from the grid and tomogram boundaries. The autoencoder is also able to detect patterns that may indicate spatial interactions between cellular components. Furthermore, we demonstrate that our autoencoder can be used for weakly supervised semantic segmentation of cellular components, requiring a very small amount of manual annotation.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Structural Biology - Volume 202, Issue 2, May 2018, Pages 150-160
نویسندگان
, , , ,