کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8686905 1580836 2018 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
Recovering task fMRI signals from highly under-sampled data with low-rank and temporal subspace constraints
چکیده انگلیسی
We show that this approach improves fMRI reconstruction quality in simulations and experimental data, focusing on the model problem of detecting subtle 1-s latency shifts between brain regions in a block-design task-fMRI experiment. Successful latency discrimination is shown at acceleration factors up to R = 16 in a radial-Cartesian acquisition. We show that this approach works with approximate, or not perfectly informative constraints, where the derived benefit is commensurate with the information content contained in the constraints. The proposed method extends low-rank approximation methods for under-sampled fMRI data acquisition by leveraging knowledge of expected task-based variance in the data, enabling improvements in the speed and efficiency of fMRI data acquisition without the loss of subtle features.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 174, 1 July 2018, Pages 97-110
نویسندگان
, , ,