کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8686931 | 1580836 | 2018 | 26 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A subject-transfer framework for obviating inter- and intra-subject variability in EEG-based drowsiness detection
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Inter- and intra-subject variability pose a major challenge to decoding human brain activity in brain-computer interfaces (BCIs) based on non-invasive electroencephalogram (EEG). Conventionally, a time-consuming and laborious training procedure is performed on each new user to collect sufficient individualized data, hindering the applications of BCIs on monitoring brain states (e.g. drowsiness) in real-world settings. This study proposes applying hierarchical clustering to assess the inter- and intra-subject variability within a large-scale dataset of EEG collected in a simulated driving task, and validates the feasibility of transferring EEG-based drowsiness-detection models across subjects. A subject-transfer framework is thus developed for detecting drowsiness based on a large-scale model pool from other subjects and a small amount of alert baseline calibration data from a new user. The model pool ensures the availability of positive model transferring, whereas the alert baseline data serve as a selector of decoding models in the pool. Compared with the conventional within-subject approach, the proposed framework remarkably reduced the required calibration time for a new user by 90% (18.00â¯min-1.72â¯Â±â¯0.36â¯min) without compromising performance (pâ¯=â¯0.0910) when sufficient existing data are available. These findings suggest a practical pathway toward plug-and-play drowsiness detection and can ignite numerous real-world BCI applications.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 174, 1 July 2018, Pages 407-419
Journal: NeuroImage - Volume 174, 1 July 2018, Pages 407-419
نویسندگان
Chun-Shu Wei, Yuan-Pin Lin, Yu-Te Wang, Chin-Teng Lin, Tzyy-Ping Jung,