کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8687066 | 1580838 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Data quality over data quantity in computational cognitive neuroscience
ترجمه فارسی عنوان
کیفیت داده ها بر کیفیت داده ها در علوم اعصاب شناختی محاسباتی
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
مدل سازی محاسباتی، تصویربرداری مغز عملکردی، نسبت سیگنال به نویز، قابلیت اطمینان، قابل تقسیم بودن،
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
چکیده انگلیسی
We analyzed factors that may hamper the advancement of computational cognitive neuroscience (CCN). These factors include a particular statistical mindset, which paves the way for the dominance of statistical power theory and a preoccupation with statistical replicability in the behavioral and neural sciences. Exclusive statistical concerns about sampling error occur at the cost of an inadequate representation of the problem of measurement error. We contrasted the manipulation of data quantity (sampling error, by varying the number of subjects) against the manipulation of data quality (measurement error, by varying the number of data per subject) in a simulated Bayesian model identifiability study. The results were clear-cut in showing that - across all levels of signal-to-noise ratios - varying the number of subjects was completely inconsequential, whereas the number of data per subject exerted massive effects on model identifiability. These results emphasize data quality over data quantity, and they call for the integration of statistics and measurement theory.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 172, 15 May 2018, Pages 775-785
Journal: NeuroImage - Volume 172, 15 May 2018, Pages 775-785
نویسندگان
Antonio Kolossa, Bruno Kopp,