کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8687155 1580840 2018 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
چکیده انگلیسی
We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 170, 15 April 2018, Pages 456-470
نویسندگان
, , ,