کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8687155 | 1580840 | 2018 | 15 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
3D fully convolutional networks for subcortical segmentation in MRI: A large-scale study
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
علوم زیستی و بیوفناوری
علم عصب شناسی
علوم اعصاب شناختی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We performed comprehensive experiments over two publicly available datasets. First, we demonstrate a state-of-the-art performance on the ISBR dataset. Then, we report a large-scale multi-site evaluation over 1112 unregistered subject datasets acquired from 17 different sites (ABIDE dataset), with ages ranging from 7 to 64 years, showing that our method is robust to various acquisition protocols, demographics and clinical factors. Our method yielded segmentations that are highly consistent with a standard atlas-based approach, while running in a fraction of the time needed by atlas-based methods and avoiding registration/normalization steps. This makes it convenient for massive multi-site neuroanatomical imaging studies. To the best of our knowledge, our work is the first to study subcortical structure segmentation on such large-scale and heterogeneous data.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: NeuroImage - Volume 170, 15 April 2018, Pages 456-470
Journal: NeuroImage - Volume 170, 15 April 2018, Pages 456-470
نویسندگان
Jose Dolz, Christian Desrosiers, Ismail Ben Ayed,