کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
872168 910238 2014 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An analytical model to predict interstitial lubrication of cartilage in migrating contact areas
ترجمه فارسی عنوان
یک مدل تحلیلی برای پیش بینی روانکاری بینابینی غضروف در ناحیه های تماس مهاجر
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
چکیده انگلیسی

For nearly a century, articular cartilage has been known for its exceptional tribological properties. For nearly as long, there have been research efforts to elucidate the responsible mechanisms for application toward biomimetic bearing applications. It is now widely accepted that interstitial fluid pressurization is the primary mechanism responsible for the unusual lubrication and load bearing properties of cartilage. Although the biomechanics community has developed elegant mathematical theories describing the coupling of solid and fluid (biphasic) mechanics and its role in interstitial lubrication, quantitative gaps in our understanding of cartilage tribology have inhibited our ability to predict how tribological conditions and material properties impact tissue function. This paper presents an analytical model of the interstitial lubrication of biphasic materials under migrating contact conditions. Although finite element and other numerical models of cartilage mechanics exist, they typically neglect the important role of the collagen network and are limited to a specific set of input conditions, which limits general applicability. The simplified approach taken in this work aims to capture the broader underlying physics as a starting point for further model development. In agreement with existing literature, the model indicates that a large Peclet number, Pe, is necessary for effective interstitial lubrication. It also predicts that the tensile modulus must be large relative to the compressive modulus. This explains why hydrogels and other biphasic materials do not provide significant interstitial pressure under high Pe conditions. The model quantitatively agrees with in-situ measurements of interstitial load support and the results have interesting implications for tissue engineering and osteoarthritis problems. This paper suggests that a low tensile modulus (from chondromalacia or local collagen rupture after impact, for example) may disrupt interstitial pressurization, increase shear stresses, and activate a condition of progressive surface damage as a potential precursor of osteoarthritis.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 47, Issue 1, 3 January 2014, Pages 148–153
نویسندگان
, ,