کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
872901 910287 2009 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The effect of sliding velocity on chondrocytes activity in 3D scaffolds
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
The effect of sliding velocity on chondrocytes activity in 3D scaffolds
چکیده انگلیسی

Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated ±25° at 0.01, 0.1, and 1 Hz to generate 0.28, 2.8, and 28 mm/s, respectively. The median velocity of these ‘open’ motion trajectories was tested against ‘closed’ motion trajectories in that the scaffold oscillated ±20° against the ball at 1 Hz, reaching 2.8 mm/s. Constructs were loaded twice a day for 1 h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed.Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28 mm/s, while all other measured variables were considerably up-regulated at 28 mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA.To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 42, Issue 4, 11 March 2009, Pages 424–429
نویسندگان
, , ,