کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
875364 910382 2007 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
In vivo pons motion within the skull
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مهندسی پزشکی
پیش نمایش صفحه اول مقاله
In vivo pons motion within the skull
چکیده انگلیسی

Finite element (FE) models are used to identify head injury mechanisms and design new and improved injury prevention schemes. Although brain–skull boundary conditions strongly influence the model mechanical responses, limited experimental data are available to develop an informed representation. We hypothesize that the spinal cord tension and gravity contribute to the pons displacement in vivo. Static high-resolution T1-weighted sagittal MR images of the inferior portion of the head in neutral and flexion positions were acquired in 15 human volunteers in both supine and prone postures. Boundaries of the pons and clivus were extracted with a gradient-based algorithm, and the pontes were fitted into ellipses. Assuming rigid body motion of the skull, image pairs in different postures were co-registered with an autocorrelation technique. By comparing images before and after the motion, we found that while the rotation of the pons is negligible relative to the skull, the pons displaces significantly at the foramen magnum, on the order of ∼2 mm. When the spinal cord tension and gravity act in concert, the pons moves caudally; when opposed, superiorly, such that the influence of gravity on the pons is six times that of the spinal cord tension. Based on these findings, we recommend that the brainstem–skull interface be treated as a sliding (with or without friction) boundary condition in FE models of the human head.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Biomechanics - Volume 40, Issue 1, 2007, Pages 92–99
نویسندگان
, ,