کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
877888 | 911053 | 2009 | 5 صفحه PDF | دانلود رایگان |

Silver bionanoparticles (AgNPs) have been known to have inhibitory and bactericidal effects. Resistance to antimicrobial agents by pathogenic bacteria has emerged in recent years and is a major health problem. This report focuses on the synthesis of metallic bionanoparticles of silver using a reduction of aqueous Ag+ ion with the culture supernatants of Staphylococcus aureus. The bioreduction of the Ag+ ions in the solution was monitored in the aqueous component and the spectrum of the solution measured through ultraviolet-visible spectrophotometry and characterized by atomic force microscopy. The AgNPs were evaluated for their antimicrobial activities against different pathogenic organisms. The most sensitive antimicrobial activity has been observed against methicillin-resistant S. aureus followed by methicillin-resistant Staphylococcus epidermidis and Streptococcus pyogenes, whereas only moderate antimicrobial activity was seen against Salmonella typhi and Klebsiella pneumoniae.From the Clinical EditorSilver bionanoparticles (AgNPs) were evaluated for their antimicrobial activities against different pathogenic organisms. The most sensitive antimicrobial activity has been observed against methicillin-resistant S. aureus followed by methicillin-resistant Staphylococcus epidermidis and Streptococcus pyogenes, whereas only moderate antimicrobial activity was seen against Salmonella typhi and Klebsiella pneumoniae.
Journal: Nanomedicine: Nanotechnology, Biology and Medicine - Volume 5, Issue 4, December 2009, Pages 452–456