کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
878084 | 911060 | 2010 | 8 صفحه PDF | دانلود رایگان |

We report a nanoformulation of curcumin with a tripolymeric composite for delivery to cancer cells. The composite nanoparticles (NPs) were prepared by using three biocompatible polymers—alginate (ALG), chitosan (CS), and pluronic—by ionotropic pre-gelation followed by polycationic cross-linking. Pluronic F127 was used to enhance the solubility of curcumin in the ALG-CS NPs. Atomic force and scanning electron microscopic analysis showed that the particles were nearly spherical in shape with an average size of 100 ± 20 nm. Fourier transform–infrared analysis revealed potential interactions among the constituents in the composite NPs. Encapsulation efficiency (%) of curcumin in composite NPs showed considerable increase over ALG-CS NPs without pluronic. The in vitro drug release profile along with release kinetics and mechanism from the composite NPs were studied under simulated physiological conditions for different incubation periods. A cytotoxicity assay showed that composite NPs at a concentration of 500 μg/mL were nontoxic to HeLa cells. Cellular internalization of curcumin-loaded composite NPs was confirmed from green fluorescence inside the HeLa cells. The half-maximal inhibitory concentrations for free curcumin and encapsulated curcumin were found to be 13.28 and 14.34 μM, respectively.From the Clinical EditorA nanoformulation of curcumin with a tri-component polymeric composite for delivery to cancer cells is reported in this paper. Cellular internalization of curcumin loaded composite nanoparticles was confirmed from green fluorescence inside the HeLa cells.
Journal: Nanomedicine: Nanotechnology, Biology and Medicine - Volume 6, Issue 1, February 2010, Pages 153–160