کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
878175 | 911066 | 2008 | 5 صفحه PDF | دانلود رایگان |

Current nanomaterial research is focused on the medical applications of nanotechnology, whereas side effects associated with nanotechnology use, especially the environmental impacts, are not taken into consideration during the engineering process. Nanomedical users and developers are faced with the challenge of balancing the medical and societal benefits and risks associated with nanotechnology. The adequacy of available tools, such as physiologically-based pharmacokinetic modeling or predictive structure-activity relationships, in assessing the toxicity and risk associated with specific nanomaterials is unknown. Successful development of future nanomedical devices and pharmaceuticals thus requires a consolidated information base to select the optimal nanomaterial in a given situation—understanding the toxicology and potential side effects associated with candidate materials for medical applications, understanding product life cycle, and communicating effectively with personnel, stakeholders, and regulators. This can be achieved through an innovative combination of toxicology, risk assessment modeling, and tools developed in the field of multicriteria decision analysis (MCDA).
Journal: Nanomedicine: Nanotechnology, Biology and Medicine - Volume 4, Issue 2, June 2008, Pages 167–171