| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8850178 | 1618706 | 2018 | 7 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Multi-isotope (Ba, C, O) partitioning during experimental carbonatization of a hyper-alkaline solution
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													علوم زمین و سیارات
													ژئوشیمی و پترولوژی
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Carbonates formed from hyperalkaline aqueous solutions at the EarthÌs surface are known to bear the most extreme disequilibrium isotope signatures reported so far in nature. We present here the results for stable carbon (C), oxygen (O), and barium (Ba) isotope fractionation during the precipitation of witherite (BaCO3) induced by the chemical absorption of atmospheric carbon dioxide (CO2) into an aqueous hyper-alkaline solution (at 4° and 21â¯Â°C; 1â¯atm total pressure). Independent from temperature, the barium carbonate formation was associated with a substantial enrichment of the lighter C and O isotopes in the solid compared to the atmosphere (C, O), close to previous results found in experiments and nature. A new approach is introduced to explain oxygen isotope fractionation upon hydroxylation of CO2. With Ba isotope enrichment factors between â0.45 and â0.53â° (138/134ε) or â0.34 and â0.40â° (137/134ε), respectively, the synthesized BaCO3 displays the highest kinetic enrichment of the light Ba isotope in the carbonate solid reported so far.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Chemie der Erde - Volume 78, Issue 2, May 2018, Pages 241-247
											Journal: Chemie der Erde - Volume 78, Issue 2, May 2018, Pages 241-247
نویسندگان
												Michael E. Böttcher, Nadja Neubert, Peter Escher, Katja von Allmen, Elias Samankassou, Thomas F. Nägler,