کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8853724 | 1618906 | 2018 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Aluminum-responsive genes revealed by RNA-Seq and related physiological responses in leaves of two Citrus species with contrasting aluminum-tolerance
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم زیستی و بیوفناوری
علوم محیط زیست
شیمی زیست محیطی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Little is known about the physiological and molecular responses of leaves to aluminum (Al)-toxicity. Seedlings of Al-intolerant Citrus grandis and Al-tolerant Citrus sinensis were supplied daily with nutrient solution containing 0â¯mM (control) and 1.0â¯mM (Al-toxicity) AlCl3·6H2O for 18 weeks. We found that Al-treatment only decreased CO2 assimilation in C. grandis leaves, and that the Al-induced alterations of gene expression profiles were less in C. sinensis leaves than those in C. grandis leaves, indicating that C. sinensis seedlings were more tolerant to Al-toxicity than C. grandis ones. Al concentration was similar between Al-treated C. sinensis and C. grandis roots, but it was higher in Al-treated C. grandis stems and leaves than that in Al-treated C. sinensis stems and leaves. Al-treated C. sinensis seedlings accumulated relatively more Al in roots and transported relatively little Al to shoots. This might be responsible for the higher Al-tolerance of C. sinensis. Further analysis showed that the following several aspects might account for the higher Al-tolerance of C. sinensis, including: (a) Al-treated C. sinensis leaves had higher capacity to maintain the homeostasis of energy and phosphate, the stability of lipid composition and the integrity of cell wall than did Al-treated C. grandis leaves; (b) Al-triggered production of reactive oxygen species (ROS) and the other cytotoxic compounds was less in Al-treated C. sinensis leaves than that in Al-treated C. grandis leaves, because Al-toxicity decreased CO2 assimilation only in C. grandis leaves; accordingly, more upregulated genes involved in the detoxifications of ROS, aldehydes and methylglyoxal were identified in Al-treated C. grandis leaves; in addition, flavonoid concentration was increased only in Al-treated C. grandis leaves; (c) Al-treated C. sinensis leaves could keep a better balance between protein phosphorylation and dephosphorylation than did Al-treated C. grandis leaves; and (d) both the equilibrium of hormones and hormone-mediated signal transduction were greatly disrupted in Al-treated C. grandis leaves, but less altered in Al-treated C. sinensis leaves. Finally, we discussed the differences in Al-responsive genes between Citrus roots and leaves.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Ecotoxicology and Environmental Safety - Volume 158, 30 August 2018, Pages 213-222
Journal: Ecotoxicology and Environmental Safety - Volume 158, 30 August 2018, Pages 213-222
نویسندگان
Peng Guo, Yi-Ping Qi, Wei-Lin Huang, Lin-Tong Yang, Zeng-Rong Huang, Ning-Wei Lai, Li-Song Chen,