کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8875689 1623699 2018 16 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Estimation of irrigation requirements for drip-irrigated maize in a sub-humid climate
ترجمه فارسی عنوان
برآورد نیاز آبیاری برای ذرت آبیاری قطره ای در شرایط آب و هوای
کلمات کلیدی
آبیاری قطره ای نیازهای آبیاری، ذرت، منطقه بندی زراعی و اقلیمی، شبیه سازی محصول، آب و هوای مرطوب،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
Drip-irrigation is increasingly applied in maize (Zea mays L.) production in sub-humid region. It is critical to quantify irrigation requirements during different growth stages under diverse climatic conditions. In this study, the Hybrid-Maize model was calibrated and applied in a sub-humid Heilongjiang Province in Northeast China to estimate irrigation requirements for drip-irrigated maize during different crop physiological development stages and under diverse agro-climatic conditions. Using dimensionless scales, the whole growing season of maize was divided into diverse development stages from planting to maturity. Drip-irrigation dates and irrigation amounts in each irrigation event were simulated and summarized in 30-year simulation from 1981 to 2010. The maize harvest area of Heilongjiang Province was divided into 10 agro-climatic zones based on growing degree days, arid index, and temperature seasonality. The simulated results indicated that seasonal irrigation requirements and water stress during different growth stages were highly related to initial soil water content and distribution of seasonal precipitation. In the experimental site, the average irrigation amounts and times ranged from 48 to 150 mm with initial soil water content decreasing from 100 to 20% of the maximum soil available water. Additionally, the earliest drip-irrigation event might occur during 3- to 8-leaf stage. The water stress could occur at any growth stages of maize, even in wet years with abundant total seasonal rainfall but poor distribution. And over 50% of grain yield loss could be caused by extended water stress during the kernel setting window and grain filling period. It is estimated that more than 94% of the maize harvested area in Heilongjiang Province needs to be irrigated although the yield increase varied (0 to 109%) in diverse agro-climatic zones. Consequently, at least 14% of more maize production could be achieved through drip-irrigation systems in Heilongjiang Province compared to rainfed conditions.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Integrative Agriculture - Volume 17, Issue 3, March 2018, Pages 677-692
نویسندگان
, , , , ,