کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8876886 1623772 2018 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
An integrated mathematical epithelial cell model for airway surface liquid regulation by mechanical forces
ترجمه فارسی عنوان
یک مدل سلول اپیتلیال ریاضی یکپارچه برای تنظیم مقادیر سطح مایعات هوایی توسط نیروهای
کلمات کلیدی
سلول های اپیتلیال هوایی، کانال های یونی مکانیسم حساس، مقررات مایع سطح هواپیما، فیبروز کیستیک، شار تبخیری،
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم کشاورزی و بیولوژیک (عمومی)
چکیده انگلیسی
A robust method based on reverse engineering was utilized to construct the ion-channel conductance functions for airway epithelial sodium channels (ENaC), the cystic fibrosis transmembrane conductance regulator (CFTR), and calcium-activated chloride channels (CaCC). The ion-channel conductance models for both normal (NL) and cystic fibrosis (CF) airway epithelia were developed and then coupled to an adenosine triphosphate (ATP) metabolism model and a fluid transport model (collectively called the integrated cell model) to investigate airway surface liquid (ASL) volume regulation and hence mucus concentration, by mechanical forces in NL and CF human airways. The epithelial cell models for NL and CF required differences in Cl− secretion (decreased in CF) and Na+ absorption (raised in CF) to reproduce behaviors similar to in vitro epithelial cells exposed to mechanical forces (cyclic shear stress, cyclic compressive pressure and cilial strain) and selected modulators of ion channels and ATP release. The epithelial cell models were then used to investigate the effects of mechanical forces and evaporative flux on ASL and mucus homeostasis in both NL and CF airway epithelia. Because of reduced CF ASL volumes, CF mucus concentrations increased and produced a greater dependence of ASL volume regulation on cilia-mucus-ATP release interactions in CF than NL epithelial nodules. Similarly, the CF model was less tolerant to evaporation induced ASL volume reduction at all ATP release rates than the NL model. Consequently, this reverse engineered model appears to provide a robust tool for investigating CF pathophysiology and novel therapies.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Theoretical Biology - Volume 438, 7 February 2018, Pages 34-45
نویسندگان
, , , , ,