| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8885425 | 1626766 | 2018 | 10 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Age composition and growth without age data: a likelihood-based model
												
											ترجمه فارسی عنوان
													ترکیب سن و رشد بدون داده های سن: یک مدل مبتنی بر 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													علوم زیستی و بیوفناوری
													علوم کشاورزی و بیولوژیک
													علوم آبزیان
												
											چکیده انگلیسی
												We proposed models capable of jointly estimating age composition and somatic growth parameters (Lâ and K) from length-frequency data without the need to obtain age data. The proposed approach consists of a linear regression in which both the regression coefficients (age composition) and the predictor variables (size distribution at each age) are unknown. The predictor variables correspond to theoretical simulated values ââfrom a growth curve, whose parameters are jointly estimated with the regression coefficients using a robust global optimization algorithm, differential evolution, which uses stochastic procedures with parallel methods of direct search. The proposed models were assessed using a simulation study with two sets of virtual fish populations, representing two different growth curves. The parameter estimates of the age composition were equally precise and accurate among models in which the growth parameters were estimated or known a priori. Furthermore, the estimates obtained by the models that also estimated the growth parameters were unbiased and accurate. The estimates of growth parameters are an alternative for cases in which the relationship between length and age is unknown, outdated or limited. The models presented in this study can be applied to various groups of organisms other than fish.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Fisheries Research - Volume 204, August 2018, Pages 361-370
											Journal: Fisheries Research - Volume 204, August 2018, Pages 361-370
نویسندگان
												Diego Corrêa Alves, Lilian Paula Vasconcelos, Angelo Antonio Agostinho, 
											