| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 8895661 | 1630352 | 2018 | 13 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On common zeros of a pair of quadratic forms over a finite field
												
											ترجمه فارسی عنوان
													در صفهای رایج از جفت فرمهای درجه دوم در یک میدان 
													
												دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											چکیده انگلیسی
												Let F be a finite field of characteristic distinct from 2, f and g quadratic forms over F, dimâ¡f=dimâ¡g=n. A particular case of Chevalley's theorem claims that if nâ¥5, then f and g have a common zero. We give an algorithm, which establishes whether f and g have a common zero in the case nâ¤4. The most interesting case is n=4. In particular, we show that if n=4 and detâ¡(f+tg) is a squarefree polynomial of degree different from 2, then f and g have a common zero. We investigate the orbits of pairs of 4-dimensional forms (f,g) under the action of the group GL4(F), provided f and g do not have a common zero. In particular, it turns out that for any polynomial p(t) of degree at most 4 up to the above action there exist at most two pairs (f,g) such that detâ¡(f+tg)=p(t), and the forms f, g do not have a common zero. The proofs heavily use Brumer's theorem and the Hasse-Minkowski theorem.
											ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Finite Fields and Their Applications - Volume 51, May 2018, Pages 191-203
											Journal: Finite Fields and Their Applications - Volume 51, May 2018, Pages 191-203
نویسندگان
												A.S. Sivatski, 
											