کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8896401 1630415 2018 17 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Invariant differential operators in positive characteristic
ترجمه فارسی عنوان
اپراتورهای دیفرانسیل غیر قابل تعویض در ویژگی های
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
In 1928, at the IMC, Veblen posed the problem: classify invariant differential operators between spaces of “natural objects” (in modern terms: either tensor fields, or jets) over a real manifold of any dimension. The problem was solved by Rudakov for unary operators (no nonscalar operators except the exterior differential); by Grozman for binary operators. In dimension one, Grozman discovered an indecomposable selfdual operator of order 3 that does not exist in higher dimensions. We solve Veblen's problem in the 1-dimensional case over any field of positive characteristic. Unary invariant operators are known: these are the exterior differential and analogs of the Berezin integral. We construct new binary operators from these analogs and discovered two more (up to dualizations) types of new indecomposable operators of however high order: analogs of the Grozman operator and a completely new type of operators. Gordan's transvectants, aka Cohen-Rankin brackets, always invariant with respect to the simple 3-dimensional Lie algebra, are also invariant, in characteristic 2, with respect to the whole Lie algebra of vector fields on the line when the height of the indeterminate is equal to 2.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Algebra - Volume 499, 1 April 2018, Pages 281-297
نویسندگان
, ,