کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8896810 1630604 2018 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Superconcentration, and randomized Dvoretzky's theorem for spaces with 1-unconditional bases
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Superconcentration, and randomized Dvoretzky's theorem for spaces with 1-unconditional bases
چکیده انگلیسی
Let n be a sufficiently large natural number and let B be an origin-symmetric convex body in Rnin the ℓ-position, and such that the space (Rn,‖⋅‖B) admits a 1-unconditional basis. Then for any ε∈(0,1/2], and for random cεlog⁡n/log⁡1ε-dimensional subspace E distributed according to the rotation-invariant (Haar) measure, the section B∩E is (1+ε)-Euclidean with probability close to one. This shows that the “worst-case” dependence on ε in the randomized Dvoretzky theorem in the ℓ-position is significantly better than in John's position. It is a previously unexplored feature, which has strong connections with the concept of superconcentration introduced by S. Chatterjee. In fact, our main result follows from the next theorem: Let B be as before and assume additionally that B has a smooth boundary and Eγn‖⋅‖B≤ncEγn‖gradB(⋅)‖2 for a small universal constant c>0, where gradB(⋅) is the gradient of ‖⋅‖B and γn is the standard Gaussian measure in Rn. Then for any p∈[1,clog⁡n] the p-th power of the norm ‖⋅‖Bp is Clog⁡n-superconcentrated in the Gauss space.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 274, Issue 1, 1 January 2018, Pages 121-151
نویسندگان
,