کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8897663 1631038 2018 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
VSPs of cubic fourfolds and the Gorenstein locus of the Hilbert scheme of 14 points on A6
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
VSPs of cubic fourfolds and the Gorenstein locus of the Hilbert scheme of 14 points on A6
چکیده انگلیسی
To a cubic fourfold one may associate a geometric object (a hyperkähler manifold) via the theory of VSP and an algebraic object (a finite Gorenstein algebra) via apolarity. We prove that the associated algebra is smoothable if and only if the fourfold lies on the Iliev-Ranestad divisor (which parameterizes certain cubics whose VSP is isomorphic to the Hilbert scheme of two points on a K3 surface). This bridge allows us to give a detailed description of the algebraic side, i.e., the Gorenstein locus of 14 points on A6 and also to identify the equation of the Iliev-Ranestad divisor as the unique degree 10 invariant of SL6. As our main technical tool, we develop a relative version of apolarity, building on ideas of Elias-Rossi.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 557, 15 November 2018, Pages 265-286
نویسندگان
,