کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897668 | 1631038 | 2018 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Characterization of rational matrices that admit finite digit representations
ترجمه فارسی عنوان
خصوصیات ماتریس های منطقی که اعمال نماینده های رقمی محدود هستند
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
Let A be an nÃn matrix with rational entries and let Zn[A]:=âk=1â(Zn+AZn+â¦+Akâ1Zn) be the minimal A-invariant Z-module containing the lattice Zn. If DâZn[A] is a finite set we call the pair (A,D)a digit system. We say that (A,D) has the finiteness property if each zâZn[A] can be written in the form z=d0+Ad1+â¦+Akdk, with kâN and digitsdjâD for 0â¤jâ¤k. We prove that for a given matrix AâMn(Q) there is a finite set DâZn[A] such that (A,D) has the finiteness property if and only if A has no eigenvalue of absolute value <1. This result is the matrix analogue of the height reducing property of algebraic numbers. In proving this result we also characterize integer polynomials PâZ[x] that admit digit systems having the finiteness property in the quotient ring Z[x]/(P).
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 557, 15 November 2018, Pages 350-358
Journal: Linear Algebra and its Applications - Volume 557, 15 November 2018, Pages 350-358
نویسندگان
J. Jankauskas, J.M. Thuswaldner,