کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
8897727 | 1631040 | 2018 | 14 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On the realizability of the critical points of a realizable list
ترجمه فارسی عنوان
در قابل اجرا بودن نقاط بحرانی یک لیست قابل اجرا
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
چکیده انگلیسی
The nonnegative inverse eigenvalue problem (NIEP) is to characterize the spectra of entrywise nonnegative matrices. A finite multiset of complex numbers is called realizable if it is the spectrum of an entrywise nonnegative matrix. Monov conjectured that the kth-moments of the list of critical points of a realizable list are nonnegative. Johnson further conjectured that the list of critical points must be realizable. In this work, Johnson's conjecture, and consequently Monov's conjecture, is established for a variety of important cases including Ciarlet spectra, SuleÄmanova spectra, spectra realizable via companion matrices, and spectra realizable via similarity by a complex Hadamard matrix. Additionally we prove a result on differentiators and trace vectors, and use it to provide an alternative proof of a result due to Malamud and a generalization of a result due to Kushel and Tyaglov on circulant matrices. Implications for further research are discussed.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 555, 15 October 2018, Pages 301-313
Journal: Linear Algebra and its Applications - Volume 555, 15 October 2018, Pages 301-313
نویسندگان
Sarah L. Hoover, Daniel A. McCormick, Pietro Paparella, Amber R. Thrall,