کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
8898041 1631056 2018 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Nodal decompositions of graphs
ترجمه فارسی عنوان
تقسیم بندی متداول گراف
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
چکیده انگلیسی
A nodal domain of a function is a maximally connected subset of the domain for which the function does not change sign. Courant's nodal domain theorem gives a bound on the number of nodal domains of eigenfunctions of elliptic operators. In particular, the k-th eigenfunction contains no more than k nodal domains. We prove a generalization of Courant's theorem to discrete graphs. Namely, we show that for the k-th eigenvalue of a generalized Laplacian of a discrete graph, there exists a set of corresponding eigenvectors such that each eigenvector can be decomposed into at most k nodal domains. In addition, we show this set to be of co-dimension zero with respect to the entire eigenspace.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Linear Algebra and its Applications - Volume 539, 15 February 2018, Pages 60-71
نویسندگان
,